

Lines and points like Euclid but...

- Nothing about angles
- Nothing about similarity
- Nothing about distances
- Nothing about parallel lines
- Nothing about areas
- Nothing about circles

That's most of Euclid gone -what could be easier?

Perspectivity and Projectivity

Perspectivity is a single step

Projectivity is a sequence, two are the same if they have the same effect.

Perspective drawing

Line of points at infinity

- where parallel lines meet

Cross ratio

A version discovered by Pappus of Alexandria ~ 340AD.

Cross Ratio - proof

Area AOC =
$$\frac{h \cdot AC}{2} = \frac{1}{2}OA \cdot OC \cdot \sin AOC$$

h

С

В

After a bit of cancelling we get

AC·BD _	$sin AOC \cdot sin BOD$
BC·AD	sin BOC·sin AOD

So the cross ratio can be associated with the angles at O instead of the points on the line

The Fundamental Theorem

A projectivity is determined when the mapping of three points on one line to three on another is specified.

Corollary

A projectivity is a perspectivity if the point where two lines cross maps to itself. \bigwedge

 $ABCD \quad \overline{\land} \quad A'B'C'D'$ $O = BB' \cdot CC'$ $BCD \quad \overline{\overline{\land}} \quad B'C'D'$

Pappus's hexagon theorem

Derived using Menelaus' theorem by Pappus

Later History

- Theory of perspectives for drawings developed in the 15th century
- Desargues Theorem published in 1648 the picture at the beginning.
- Pascal's theorem in 1640 about a hexagon in a conic
- Main development in the 19th century duality and axioms

Cross ratio in a Circle

Angles at O and O' are the same

So the cross ratio at O' is the same as at O

Even in perspective

A conic is determined by 5 points

Angle subtended by an arc

Angle at V is half the angle DOC

So it doesn't

depend on where

V is on the circle

Pascal's Theorem

A generalization of Pappus's theorem

A conic in projective geometry

One definition is by using Pascal's theorem Five points define a conic

Axioms

- Any two lines have a single point in common
- Any two points have a single line in common
- There are four points with no three in a line
- A projectivity that leaves three points of a line invariant leave all of them invariant
- The diagonals of a complete quadrilateral are not on the same line

Barycentric coordinates

Very similar to homogenous or projective coordinates

```
(x, y, z) is the same as (kx, ky, kz)
Not all zero
```

Projective coordiantes use (x, y, 1) for (x, y)and (x, y, 0) is a point at infinity ax+by+c = 0 becomes ax+by+cz = 0

Barycentric points and lines

Duality

Equation ax + by + cz = 0is the same as xa + yb + zc = 0So the equation 1.x - 1.y + 0.z = 0Describes the line (1, -1, 0)Points (1, 1, 0) and (1, 1, 1) give line (1, -1, 0)Lines (1, -1, 0) and (1, 0, -2) give point (2, 2, 1)

Pole and Polar

A correlation changes lines into points and points into lines

The mapping between poles and polars in Euclidean geometry does this and can be generalised to conics.

Another way to get the Polar

Draw two lines through the pole giving four points on the conic

- giving two more points which are on the polar.

Another definition of a conic

Those points or lines which are incident with themselves under an order two correlation (one that is an identity when applied twice).

Brianchon's Theorem

Discrete Geometry

- 31 points and 31 lines $(5^2 + 5 + 1)$
- 6 points on every line
- 6 lines through every point

Can be given barycentric coordinates (i mod 5, j mod 5, k mod 5) Also by line I and point p are incident if I+p =0, 1, 3, 8, 12, or 18 mod 31

Example in a finite geometry

Line I and point p are incident if I+p =0, 1, 3, 8, 12, or 18 mod 31 The points 0, 4, 6, 9, 16, 17 are on a conic

